翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

S-m-n theorem : ウィキペディア英語版
Smn theorem

In computability theory the ''s''''mn'' theorem, (also called the translation lemma, parameter theorem, or parameterization theorem) is a basic result about programming languages (and, more generally, Gödel numberings of the computable functions) (Soare 1987, Rogers 1967). It was first proved by Stephen Cole Kleene (Kleene 1943).
In practical terms, the theorem says that for a given programming language and positive integers ''m'' and ''n'', there is a particular algorithm that operates on the source code of programs with ''m'' + ''n'' free variables. This algorithm produces source code that effectively substitutes ''m'' given values for the first ''m'' free variables in the program and leaves the rest free.
==Details==

The basic form of the theorem applies to functions of two arguments (Nies 2009, p. 6). Given a Gödel numbering \varphi of recursive functions, there is a primitive recursive function ''s'' of two arguments with the following property: for every Gödel number ''p'' of a partial computable function ''f'' with two arguments, the expressions \varphi_(y) and f(x,y) are defined for the same combinations of natural numbers ''x'' and ''y'', and their values are equal for any such combination. In other words, the following extensional equality of functions holds for every ''x'':
:\varphi_ \simeq \lambda y.\varphi_p(x,y).\,
More generally, for any ''m'', ''n'' > 0, there exists a primitive recursive function s^m_n of ''m'' + 1 arguments that behaves as follows: for every Gödel number ''p'' of a partial computable function with ''m'' + ''n'' arguments, and all values of ''x''1,…,''x''''m'':
: \varphi_ \simeq \lambda y_1,\dots,y_n.\varphi_p(x_1,\dots,x_m,y_1,\dots,y_n).\,
The function ''s'' described above can be taken to be s^1_1.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Smn theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.